

Disk Farm

Distributed farm disk storage

Igor Mandrichenko, CCF, FNAL

February 3, 2003

Farm resources

- On central "server" or "head" node
 - Some CPU
 - Big disk
 - Tape drives
 - Network connection to worker nodes
 - Outside network
- On "worker" nodes
 - CPU
 - Network connection to central node(s)
 - Local disk free or \$1/GB
- Local disk on worker nodes seems to be the cheapest but the most difficult to use resource
 - It is distributed over large number of disks*computers
 - Hard to keep track of physical data location
 - Data availability not better than availability of the farm computers

Disk Farm as distributed disk storage management system

- Name space is organized into "virtual file name space"
 - Virtual path: /E123/data/file.5 this is what user knows
 - Physical path: fnpc221:/local/stage2/XYZ123 this is what disk farm knows so that user does not have to
- User operates in familiar UNIX-like file name space using familiar commands
- Solution for node unreliability problem: replicate data
 - Make 2,3,4... copies of the file on different nodes
 - Data is easy to reproduce or has short life: 1 copy
 - Data is precious: 2,5,10... copies
 - Disk Farm replicates data off-line
- Load sharing and control
 - Each node has a limit for the number of simultaneous reads/writes
 - Load is evenly distributed and optimized

Disk Farm design

User interface

- Basic UNIX file system commands operate in virtual file name space
 - dfarm ls <path>|<wildcard>
 - dfarm mkdir <vpath>
 - dfarm rmdir <vpath>

 - dfarm get [-v] [-t <timeout>] <vpath> <local path>
 - dfarm rm <vpath>|<wildcard>
 - dfarm ln <vpath> <local path>

Additional commands

- dfarm info <vpath>
 - Prints where the file is stored
- dfarm ping
 - Prints list of available disk farm nodes and their load (response time, transactions)

5

- dfarm stat <node>
 - Prints status of individual farm node (disk space availability)

User Interface (continued)

- File/directory attributes
 - User can define arbitrary attributes for files and directories and assign them arbitrary text values
 - Attributes may be inherited from a directory down
 - User can list files/directory with certain attributes
- Administrative functions
 - File re-replication
 - Make additional replicas of an existing file
 - Node hold/release
 - Held node is read-only
 - Node replication
 - Node is about to go down, copy data stored there to other nodes

Local and remote access

- Local access through proprietary interface, UI, Python API
 - Fast
 - Scalable
 - Less secure, security schema is similar to NFS
- Remote access through Kerberized or GSI (Grid) FTP interface
 - Still fast and scalable (data does not go through central node)
 - Strong security
 - Third party transfers allow direct cluster-to-cluster transfers

What it can be used for

- Three types of storage
 - Scratch "sandbox" created for batch process
 - Temporary data is "parked" between production phases or analisys iterations and is to be deleted
 - Permanent data is stored indefinitely
- Disk Farm perfect as temporary storage
 - Not permanent: replication helps data live longer, but still not infinitely
 - Permanent or temporary largely depends on local support policies
- Remote (GridFTP) interface can be used to expose a cluster as a grid storage element
- Data can be pre-staged to a cluster before jobs start there

Existing installations

- CDF production farm
 - ~150 nodes
 - 16TB capacity, 10TB used
 - ~10 TB/day transferred to/from/inside
 - "single" user
- Fixed Target farm
 - 90 nodes
 - 2TB capacity, ~1TB used
 - Multiple users
- D0 production farm
 - 340 nodes
 - ~5TB, 0.3TB used
 - "single" user